Experimental in situ exposure of the seagrass Posidonia oceanica (L.) Delile to 15 trace elements.

نویسندگان

  • J Richir
  • N Luy
  • G Lepoint
  • E Rozet
  • A Alvera Azcarate
  • S Gobert
چکیده

The Mediterranean seagrass Posidonia oceanica (L.) Delile has been used for trace element (TE) biomonitoring since decades ago. However, present informations for this bioindicator are limited mainly to plant TE levels, while virtually nothing is known about their fluxes through P. oceanica meadows. We therefore contaminated seagrass bed portions in situ at two experimental TE levels with a mix of 15 TEs (Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Ag, Cd, Pb and Bi) to study their uptake and loss kinetics in P. oceanica. Shoots immediately accumulated pollutants from the beginning of exposures. Once contaminations ended, TE concentrations came back to their original levels within two weeks, or at least showed a clear decrease. P. oceanica leaves exhibited different uptake kinetics depending on elements and leaf age: the younger growing leaves forming new tissues incorporated TEs more rapidly than the older senescent leaves. Leaf epiphytes also exhibited a net uptake of most TEs, partly similar to that of P. oceanica shoots. The principal route of TE uptake was through the water column, as no contamination of superficial sediments was observed. However, rhizomes indirectly accumulated many TEs during the overall experiments through leaf to rhizome translocation processes. This study thus experimentally confirmed that P. oceanica shoots are undoubtedly an excellent short-term bioindicator and that long-term accumulations could be recorded in P. oceanica rhizomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental evidence for N recycling in the leaves of the seagrass Posidonia oceanica

A one-year in situ experiment using 15 N as a tracer was designed to assess the N recycling in the leaves of the seagrass Posidonia oceanica (L.) Delile. P. oceanica was shown to partly recycle the internal nitrogen pool of its leaves in order to contribute to new leaf growth. The leaves sampled in June 1999 contained 20% of the quantity of 15 N found in June 1998. N recycling caused a differen...

متن کامل

Response of the non-indigenous Caulerpa racemosa ̊ (Forsskal) J. Agardh to the native seagrass Posidonia oceanica (L.) Delile: effect of density of shoots and orientation of edges of meadows

Caulerpa racemosa is a tropical green alga introduced into the Mediterranean as an immigrant from the Red Sea which has successfully fast-spread in the south-eastern and in the north-western part of the basin. C. racemosa occurs mostly in shallow but also in deep subtidal habitats colonising hard and soft substrata where turfs, erect algae and even seagrasses are present with the potential to p...

متن کامل

Food sources of two detritivore amphipods associated with the seagrass Posidonia oceanica leaf litter

This study focused on the ingestion and assimilation of Posidonia oceanica (L.) Delile litter by Gammarella fucicola Leach and Gammarus aequicauda Martynov, two dominant detritivore amphipods of the P. oceanica leaf litter. Scanning electron microscope observations indicated that leaf litter is highly colonized by diverse diatoms, bacteria and fungi, which may constitute a potential food source...

متن کامل

Field Measurements of Inorganic Nitrogen Uptake by Epiflora Components of the Seagrass Posidonia Oceanica (monocotyledons, Posidoniaceae)

Crustose corallines, crustose and erect brown algae, and sessile animals are major components of the epiphytic community of the Mediterranean seagrass Posidonia oceanica (L.) Delile. Production, biomass, and specific composition of this epiphyte-seagrass association are impacted by anthropogenic increase of nutrient load in this oligotrophic area. In this context, nitrogen uptake by P. oceanica...

متن کامل

AxIOM: Amphipod crustaceans from insular Posidonia oceanica seagrass meadows

BACKGROUND The Neptune grass, Posidonia oceanica (L.) Delile, 1813, is the most widespread seagrass of the Mediterranean Sea. This foundation species forms large meadows that, through habitat and trophic services, act as biodiversity hotspots. In Neptune grass meadows, amphipod crustaceans are one of the dominant groups of vagile invertebrates, forming an abundant and diverse taxocenosis. They ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Aquatic toxicology

دوره 140-141  شماره 

صفحات  -

تاریخ انتشار 2013